Untitled
Abstract: No abstract text available
Text: – PRODUCT OBSOLETE / UNDER OBSOLESCENCE – k XC9500 In-System Programmable CPLD Family R DS063 v6.0 May 17, 2013 Product Specification Features - Advanced CMOS 5V FastFLASH technology • - Supports parallel programming of multiple XC9500 devices High-performance
|
Original
|
PDF
|
XC9500
DS063
XC9500
36V18
produ2/10/1999
XC95288.
352-pin
XC95216.
XCN07010
XCN11010
|
PLCC-48 footprint
Abstract: XC95108 XC95144 XC95216 XC95288 XC9536 XC9572 XC9500 XC9500 pinout
Text: XC9500 In-System Programmable CPLD Family R December 14, 1998 Version 3.0 1* Features Family Overview • The XC9500 CPLD family provides advanced in-system programming and test capabilities for high performance, general purpose logic integration. All devices are in-system
|
Original
|
PDF
|
XC9500
PLCC-48 footprint
XC95108
XC95144
XC95216
XC95288
XC9536
XC9572
XC9500 pinout
|
GR2286
Abstract: GR2284i 100N XC2064 XC3090 XC4005 XC5210 XC9500 SVF Series GR2281i
Text: Programming Xilinx XC9500 CPLDs on GENRAD Testers Preface JTAG Programmer Version Creating GenRad Test Files Table of Contents Introduction Creating SVF Files Revision 1.3 November 20, 1998 Printed in U.S.A. svf2dts Conversion Utility R The Xilinx logo shown above is a registered trademark of Xilinx, Inc.
|
Original
|
PDF
|
XC9500
XC2064,
XC3090,
XC4005,
XC5210,
XC-DS501,
XC9500
GR2286
GR2284i
100N
XC2064
XC3090
XC4005
XC5210
SVF Series
GR2281i
|
teradyne tester test system
Abstract: Z1800 teradyne XC9500
Text: Integrating XC9500 ISP Capabilities With Manufacturing Test on the Teradyne Z1800 I n-system programming ISP allows you to program and re-program devices that are already soldered on a system board. ISP streamlines manufacturing flows, allows you to update and reconfigure remote systems,
|
Original
|
PDF
|
XC9500
Z1800
Z1800,
XC9500
a16-bit
Z1800.
Z1800
teradyne tester test system
teradyne
|
Untitled
Abstract: No abstract text available
Text: Product Obsolete/Under Obsolescence XC9500XV Family High-Performance CPLD R DS049 v3.0 June 25, 2007 6 Note: This product is being discontinued. You cannot order parts in this family after May 14, 2008. Xilinx recommends replacing XC9500XV devices with equivalent
|
Original
|
PDF
|
XC9500XV
DS049
XC9500XL
XCN07010
DS049
XCN05020.
|
XC9572XL
Abstract: PC44 VQ44 XC9500 XC9500XL XC95144XL XC95288XL XC9536XL XC95288XL pinout
Text: k XC9500XL High-Performance CPLD Family Data Sheet R DS054 v2.5 May 22, 2009 Product Specification Features • • Optimized for high-performance 3.3V systems - 5 ns pin-to-pin logic delays, with internal system frequency up to 208 MHz - Small footprint packages including VQFPs, TQFPs
|
Original
|
PDF
|
XC9500XL
DS054
XC9572XL
PC44
VQ44
XC9500
XC95144XL
XC95288XL
XC9536XL
XC95288XL pinout
|
design ideas
Abstract: XC9500XL XC95288XL evaluation board GAL Gate Array Logic Pal programming XC9500 XC95144XL XC95288XL XC9536XL XC9572XL
Text: XC9500XL XL 500 XC9 FastFLASH CPLD Family 3.3V, Faster, Lower Power, Lower Cost, New Features O ur new FastFLASH XC9500XL CPLDs expand the capability of our popular XC9500 family, bringing you more speed, more new features, and lower costs, in a new power-saving 3.3V
|
Original
|
PDF
|
XC9500XL
XC9500
XC9500XL
design ideas
XC95288XL evaluation board
GAL Gate Array Logic
Pal programming
XC95144XL
XC95288XL
XC9536XL
XC9572XL
|
54V18
Abstract: EPM7128A MAX7000A MAX7000AE XC9500XL XC95144XL
Text: XC9500XL Versus MAX7000A Architecture Comparison XBRF017 September 28, 1998 Version 1.1 7* Application Brief Overview This discussion focuses on comparing the Xilinx XC9500XL CPLD family with the Altera MAX7000A (including MAX7000AE) family. Both families address the high speed 3.3V ISP CPLD marketplace, where new developments in low
|
Original
|
PDF
|
XC9500XL
MAX7000A
XBRF017
MAX7000AE)
Max7000A
54V18
EPM7128A
MAX7000AE
XC95144XL
|
XC9500XL
Abstract: XC95144 XC95288 XC9500 XC95288 Family
Text: The FastFLASH XC9500XL Advantage .you can rest The XC9500XL 3.3V CPLD family uniquely excels in all three ARM criteria, and offers the highest level of programming reliability in a JTAGcompatible, in-system programmable family. The XC9500XL family features:
|
Original
|
PDF
|
XC9500XL
54-input
256-macrocell
XC9500
XC95144
XC95288
128-macrocell
XC95288 Family
|
XC9500
Abstract: XC9500XL XC9500XV
Text: New Software - Xilinx Development Tools What’s New in V2.1i for XC9500 CPLDS? Our latest Alliance Series and Foundation Series software, v2.1i, offers an uncompromising level of performance while improving ease of use. by Larry McKeogh, CPLD Software Sr. Technical Marketing
|
Original
|
PDF
|
XC9500
XC9500XL
XC9500XV
|
XAPP058
Abstract: schematic eprom programing system XC95144 0x00000fa0 XSVF xc9572 pin diagram 8051 microcontroller pin configuration 8051 port timing diagram intel 8051 40 pin datasheet intel 8051 copyright 1998
Text: XC9500 In-System Programming Using an Embedded Microcontroller XAPP058 January, 1998 Version 1.2 Application Note Summary The XC9500 high performance CPLD family provides in-system programmability, reliable pin locking, and JTAG boundaryscan test capability. This powerful combination of features allows designers to make significant changes and yet keep the
|
Original
|
PDF
|
XC9500
XAPP058
XC9500
00000001FF\n"
0x000f
schematic eprom programing system
XC95144
0x00000fa0
XSVF
xc9572 pin diagram
8051 microcontroller pin configuration
8051 port timing diagram
intel 8051 40 pin datasheet
intel 8051 copyright 1998
|
DRAM Controller
Abstract: vhdl code for memory controller XC9500 CPLD address generator logic vhdl code XC4000XL foundation field bus DRAM controller memory FPGA VHDL Bidirectional Bus controller vhdl code
Text: Case Studies CPLD – 1 n DRAM Controller: XC9500 ISP CPLD n Universal Serial Bus: XC4000E/X FPGA n Peripheral Component Interconnect: XC4000E/X FPGA n Digital Signal Processing: XC4000XL FPGA Case Study #1 - DRAM Controller XC9500 CPLD CPLD – 2 n Fast memory controller designed using Foundation
|
Original
|
PDF
|
XC4000E/X
XC9500
XC4000XL
DRAM Controller
vhdl code for memory controller
CPLD
address generator logic vhdl code
foundation field bus
DRAM controller memory FPGA
VHDL Bidirectional Bus
controller vhdl code
|
XAPP362
Abstract: XC9500XV
Text: Application Note: CPLD R Using the XC9500XV Timing Model XAPP362 v1.0 August 20, 2001 Summary This application note describes how to use the XC9500XV timing model. Introduction All XC9500XV CPLDs have a uniform architecture and an identical timing model, making them
|
Original
|
PDF
|
XC9500XV
XAPP362
XAPP362
|
fifo vhdl xilinx
Abstract: XC9500 xilinx fifo
Text: Using XC9500 Slew Rate Controls D esigners need options for managing the many signal switching conditions that occur in their systems. One simple but effective option is the output slew rate control provided in the XC9500 family CPLDs. This feature permits the simple
|
Original
|
PDF
|
XC9500
fifo vhdl xilinx
xilinx fifo
|
|
XC95144
Abstract: XC9500 XC95108 XC95180 XC95216 XC9536 XC9572 2-bit adder layout xapp x5878
Text: Designing with XC9500 CPLDs XAPP 073 - January, 1997 Version 1.0 Application Note Summary This application note will help designers understand the XC9500 architecture and how to get the best performance from these devices. Xilinx Family XC9500 Introduction
|
Original
|
PDF
|
XC9500
XC9500
XC95144
XC95108
XC95180
XC95216
XC9536
XC9572
2-bit adder layout
xapp
x5878
|
74x373
Abstract: XSVF XC9500 XC95108 XC95144 XC95180 XC95216 XC95288 XC9536 XC9572
Text: XC9500 In-System Programming Using an Embedded Microcontroller XAPP 058 January, 1997 Version 1.1 Application Note Summary The XC9500 high performance CPLD family provides in-system programmability, reliable pin locking, and JTAG boundaryscan test capability. This powerful combination of features allows designers to make significant changes and yet keep the
|
Original
|
PDF
|
XC9500
XC9500
00000001FF\n"
0x000f
74x373
XSVF
XC95108
XC95144
XC95180
XC95216
XC95288
XC9536
XC9572
|
9327
Abstract: XC9500 00am5
Text: TECHNICAL QUESTIONS & ANSWERS Q What should be done with unused I/O pins in an XC9500 CPLD design? XC9500 devices have internal pull-up resistors on all I/O pins. However, these resistors are active only during power-up, device configuration, in-system programming,
|
Original
|
PDF
|
XC9500
XC9500
00am-5
00am-4
00am-12
30am-12
9327
00am5
|
XC9500
Abstract: SIGNAL PATH DESIGNER
Text: Using the XC9500 Timing Model XAPP 071 January, 1997 Version 1.0 Application Note Summary This application note describes how to use the XC9500 timing model. Xilinx Family XC9500 Introduction toward macrocells that are further away than those directly
|
Original
|
PDF
|
XC9500
XC9500
SIGNAL PATH DESIGNER
|
XC95144
Abstract: DS06 HW130 XC9500 XC95108 XC95216 XC95288 XC9536 XC9572 xc95144 pinout
Text: k XC9500 In-System Programmable CPLD Family R DS063 v5.1 September 22, 2003 Product Specification Features - Advanced CMOS 5V Fast FLASH technology • - Supports parallel programming of multiple XC9500 devices • High-performance - 5 ns pin-to-pin logic delays on all pins
|
Original
|
PDF
|
XC9500
DS063
XC9500
36V18
Func500
XC95288.
XC95144
DS06
HW130
XC95108
XC95216
XC95288
XC9536
XC9572
xc95144 pinout
|
xc9572-44 pin
Abstract: xc9536 44 pin vqfp XC9536 36V18 TQ100 VQ44 XC9500 XC9536-15VQ44Q XC9572 XC9572-15TQ100Q
Text: k XC9500 In-System Programmable CPLD Automotive IQ Family R DS120-1 v1.2 October 18, 2004 Features • System frequency up to 55 MHz • Guaranteed to meet full electrical specifications over TA = –40 to +125°C • 5V in-system programmable - Endurance of 10,000 program/erase cycles
|
Original
|
PDF
|
XC9500
DS120-1
36V18
XC9536-15VQ44Q
44-pin
XC9572-15TQ100Q
TQ100
100-pin
xc9572-44 pin
xc9536 44 pin vqfp
XC9536
TQ100
VQ44
XC9536-15VQ44Q
XC9572
XC9572-15TQ100Q
|
xilinx xc95108 jtag cable Schematic
Abstract: vhdl code for rs232 receiver vhdl code for rs232 interface block diagram UART using VHDL vhdl code for uart communication vhdl code for rs232 receiver using cpld 4 bit microcontroller using vhdl infrared counter vhdl interface of rs232 to UART in VHDL UART using VHDL
Text: APPLICATION NOTE XAPP 102 January 13, 1998 Version 1.0 XC9500 Remote Field Upgrade 4* Application Note Summary This application note describes the concept and design of a remote field upgrade subsystem for an in-system programmable XC9500 CPLD. The description of the subsystem is given along with guidelines that should help with variations on it.
|
Original
|
PDF
|
XC9500
XC95108
XC9500
XC95108-10PC84
xilinx xc95108 jtag cable Schematic
vhdl code for rs232 receiver
vhdl code for rs232 interface
block diagram UART using VHDL
vhdl code for uart communication
vhdl code for rs232 receiver using cpld
4 bit microcontroller using vhdl
infrared counter vhdl
interface of rs232 to UART in VHDL
UART using VHDL
|
XAPP110
Abstract: power-sequence XC9500
Text: APPLICATION NOTE XC9500 CPLD Power Sequencing XAPP110 February 16, 1998 Version 1.0 3* Introduction Mixed signal systems - typically 5V/3.3V today - require logic parts that can operate with two power supplies. Xilinx XC9500 CPLDs are designed to operate in either mixed
|
Original
|
PDF
|
XC9500
XAPP110
power-sequence
|
Xilinx DLC5 JTAG Parallel Cable III
Abstract: dlc5 1.9 TDI TDI timing XAPP070 XC3042 XC9500
Text: Using In-System Programmability in Boundary-Scan Systems XAPP070 July, 1997 Version 1.1 Application Note Summary This application Note discusses basic design considerations for in-system programming of multiple XC9500 devices in a boundary-scan chain, and shows how to design systems that contain multiple XC9500 devices as well as other IEEE
|
Original
|
PDF
|
XAPP070
XC9500
XC9500
Xilinx DLC5 JTAG Parallel Cable III
dlc5
1.9 TDI
TDI timing
XC3042
|
XC9500XL
Abstract: CS48 PC44 PQ208 TQ100 TQ144 XAPP114
Text: APPLICATION NOTE Understanding XC9500XL CPLD Power XAPP114 January 22, 1999 Version 1.1 1* Application Note Summary The goal of this application note is to discuss XC9500XL CPLD power estimation and optimization and provide the reader with an understanding of sense-amplifier based CPLD power dissipation. A brief discussion of the process for estimation is
|
Original
|
PDF
|
XC9500XL
XAPP114
XC9500XL
CS48
PC44
PQ208
TQ100
TQ144
|